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A more traditional “hybrid” Monte Carlo 
method is the work of John Wagner to use 
deterministic transport to calculated weighting 
factors to bias the Monte Carlo run. This 
method is called FW-CADIS (forward-weighted 
consistent adjoint method).



46 Managed by UT‐Battelle
for the U.S. Department of Energy ANS Annual Meeting, June 27, 2011

5: construct weight windows

We extended the FW-CADIS method to 
reactor eigenvalue problems

1: construct DX model 2: solve DX eigenvalue equation 3: construct adjoint source

4: solve DX fixed‐source adjoint eqn
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Summary of the FW-CADIS method

• The method weights the adjoint source with the inverse of the 
forward flux/response
– Where the forward flux/response is low, the adjoint importance will be 

high, and vise versa

• Once the importance function is determined, the CADIS 
equations for calculating weight targets
– Hence, we refer to the method as Forward‐Weighted CADIS

• The method requires:
– A forward solution (for adjoint source weighting)
– An adjoint solution (for determining biasing parameters)
– Both can be automated
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Challenges for Full-Core Monte Carlo

 Sheer size of the problem to be solved: prohibitive 
computational time and memory demand

 Slow source convergence
 Apparent versus true variance
 Accommodating multiphysics coupling
 Adapting to future architectures – opportunity or 

challenge?



49

Apparent vs true variance

 Forrest Brown at MC2009 (Saratoga Springs) noted 
that the apparent variance could differ substantially 
from the true variance in a keff calculation. This factor 
could be substantial, on the order of 5-10.

 The next overhead is taken from the MC21 
presentation made at PHYSOR 10. The true variance is 
clearly larger than the apparent variance.
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MC21 Results (PHYSOR 10)

Figure 15. Comparison of Confidence Intervals between a Single Large Run
and Ten Independent Runs
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Apparent vs true variance for CMFD/FMC

 The next two overheads are taken from the FMC-
accelerated Monte Carlo method developed by Emily 
Wolters (PhD UM 2010, now at Argonne) and reported 
at M&C2011 (Rio). 
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Figure 4. Real and apparent errors
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Real error:
• With feedback, real error is 5 to 6 

times less than standard Monte 
Carlo real error for Methods II, III

• Real error 3 times less for 
Method I

• Applying HCMFD-II or –III feedback 
for this problem reduces active 
cycles by a factor of >25

Apparent error:
• “Apparent” error in MC 

underestimates “real” error
• With feedback, “apparent” error 

almost equal to the real error: 
excellent estimation of real error 
from a single calculation when 
feedback is applied

Thin solid lines: real error (over 
25 independent calculations)

Markers: apparent error (from 
single calculation)
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Figure 5. Ratio of real to apparent error when feedback is applied.
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The real error (over many independent simulations) is well-estimated by the apparent error in 
a single simulation (when feedback is applied).
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Apparent vs true variance for CMFD

 Min-Jae Lee, Han Gyu Joo, Deokjung Lee and Kord 
Smith (SNA + MC2010, Tokyo) reported that CMFD 
acceleration reduced the discrepancy between the 
apparent and true variances. The next two overheads 
are taken from their presentation. 
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An Example of Underestimation of Variance 
Standard Deviation of Pin Power
 From 25 independent MC simulation
 100,000 histories/cycle x 1,000 active cycles

Apparent Standard Deviation Real Standard Deviation

The main objective of this research is 
to reduce real standard deviation in MC simulation !

With CMFD
Acceleration



56

Results – Pin Power Distribution
With CMFD accelerationWithout CMFD acceleration

Pin Power
Distribution

Real 
Standard 
Deviation
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Discrepancy reduced with CMFD 
acceleration

 The CMFD acceleration not only improved source 
convergence (i.e, reduced the number of inactive 
cycles) but also reduced the variance during the 
active cycles. 

 By renormalizing the MC source distribution with the 
low-order fission source distribution, CMFD 
acceleration was effectively “pinning” the fission 
source distribution to the low-order solution (which 
had limited local detail).
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Validity of estimate of the variance

 Dilemma – changing the fission source distribution 
during the active cycles makes the estimate of 
variance suspect because the samples are no longer 
independent identically distributed (IID) observations.

 One solution is to run multiple (e.g., 25) simulations 
and compute the variance from the results. This was 
done by Lee et al but may be inconvenient to 
implement.

 Another solution is reported by Tom Sutton is based 
on an old idea by Prael and Gelbard – accumulate 
statistics from a batch of cycles, say 100 cycles, 
noting that the serial correlations from  one 100 cycle 
batch to the next might be negligible.

 Need more theoretical analysis. 
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Challenges for Full-Core Monte Carlo

 Sheer size of the problem to be solved: prohibitive 
computational time and memory demand

 Slow source convergence
 Apparent versus true variance
 Accommodating multiphysics coupling
 Adapting to future architectures – opportunity or 

challenge?
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Issues associated with multiphysics 
coupling with Monte Carlo

 Histogram solutions with MC
 Temperature dependence of cross sections
 Disparate meshes
 Propagation of statistical error
 Moving away from operator splitting
 Effect of statistical error on convergence of the 

multiphysics feedback iterations       
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Potential approaches for multiphysics 

 Use continuous tallies instead of histograms
 Functional expansion tallies (D. Griesheimer)
 Kernel density estimator (K. Banerjee) 

 Use “On-the-fly” Doppler Broadening (G.Yesilyurt)
 Use delta tracking to allow collision processing with 

only 0K cross sections (Viitanen and Leppanen, 
PHYSOR12)

 Use kernel density estimators (K. Banerjee) for the MC 
solution (mesh-free estimation)

 JFNK coupling for multiphysics feedback
 Need more analysis and numerical experience to 

understand impact of statistical errors on convergence 
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On-the-Fly Doppler Broadening
(Gokhan Yesilyurt, UM and Argonne)

 Broadened cross sections are determined 
during the random walk in current region 
at temperature T. 

 Up to 17-termTaylor/asymptotic 
expansion for all T in the range 77K-3200K. 

 Regressed against the exact Doppler cross 
section (Cullen) to obtain the unknown 
coefficients as a function of T and neutron 
energy E.

 No cross sections are needed -- only the 
expansion coefficients for all T, isotopes, 
and energy grid points.

 Agrees with NJOY (within 0.1% for all T).
 Negligible computational cost (!!)
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Implemented in MCNP6 (Forrest Brown 
talk at this workshop)
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Kernel Density Estimator
(Kaushik Banerjee, UM and Holtec Intl)

 X1, X2, ….., XN are N real 
observations from a density 
function f(x). f(x) can be formally 
estimated as

h

Kernel function

Estimated pdf
Increasing h

1

1ˆ( )
N

i

i

x Xf x k
Nh h

   
 


 Conventional collision and track length 

estimators can be evaluated with KDE. 
These estimators are mesh-free.

 KDE yields continuous, functional estimates 
of the tallies and their variances (like FET).

 Continuous and mesh-free tallies might be 
useful for multiphysics coupling

 Aside: KDE can be used to estimate the 
surface flux estimator (F2) and the point 
detector estimator (F5) in a scattering 
region, with bounded variance and no bias.
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Challenges for Full-Core Monte Carlo

 Sheer size of the problem to be solved: prohibitive 
computational time and memory demand

 Slow source convergence
 Apparent versus true variance
 Accommodating multiphysics coupling
 Adapting to future architectures – opportunity or 

challenge?
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Adapting to new computer architectures
 To stay on the Moore’s Law performance curve, Monte Carlo 

codes must be adapted to run efficiently on new architectures. 
 To date, Monte Carlo scales well on all architectures:

 Random walks are inherently parallel within a fission source 
cycle or within a timestep. Parallelizing across particles is 
natural and allows efficient load balancing without a priori
knowledge of the solution.

o MCNP5 – history-based parallelization with MPI and OpenMP 
 For vector architectures, the history-based random walk 

algorithm can be turned inside out to yield an event-based (or 
its stack-driven variant) algorithm that results in excellent 
speedups on vector and parallel-vector architectures

o RACER – KAPL (event-based)
o MVP – JAERI (stack-driven) 
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What about multi-core processors?

 Dual quad core processors are in wide use today. The 
trend by the chip manufacturers is multi-N-core where N 
is increasing rapidly. 
 Dual hexa-cores are available (Apple, Dell, ….)
 Intel has developed a 80-core processor (Polaris)
 Xeon nodes available up to dual 10-cores

 Monte Carlo codes which use OpenMP, or “threaded” 
across histories, can take immediate advantage of multi-
core processors: MCNP5 is threaded and uses MPI. 

IBM (Wii U)
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What about GPU processors?
 GPU processors are essentially attached SIMD 

processors that function like vector processors.
 The IBM Roadrunner at LANL consists of conventional 

multi-core processors with attached cell (similar to GPU) 
processors.

 Monte Carlo may scale well on GPU processors but only 
if the code has already been “vectorized.” 

 Estimate: many tens (if not 100s!) of person-years to 
vectorize a conventional Monte Carlo code such as 
MCNP. By then there will be a new computer architecture! 

 If HPC architectures move exclusively down the GPU 
processor path (seems unlikely), this could be a limiting 
factor for using Monte Carlo for routine design/analysis of 
global reactor configurations. 
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Summary and Conclusions
Prospects for Full-Core Monte Carlo
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Summary: prospects for full-core 
Monte Carlo

 Excessive memory demand – innovative 
decomposition schemes and the increasing capacity 
and decreasing cost of memory

 Prohibitive computational time – faster and cheaper 
multicore CPUs

 Slow source convergence – successfully applying 
CMFD and related low-order operators to accelerate 
source convergence AND pin down the fission source 
during the active cycles  
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Prospects (2)

 Apparent versus true variance – multiple realizations 
provide assurance that the estimated variance is OK 
but more analysis needed to avoid replication of runs 
for a reliable estimate of the variance.

 Accommodating multiphysics coupling – this area is 
just beginning to be explored. There are some ideas 
out there that need to be explored, including JFNK 
and KDE and OTF Doppler broadening.

 Adapting to future architectures – perhaps the most 
uncertain. The direction that computer architectures 
take is dependent on where the gaming industry and 
the transaction industry goes. Multicore is OK but 
GPUs would be problematical.  
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Any questions?


